Erratum to: A Stabilized Mixed Finite Element Method for Elliptic Optimal Control Problems
نویسندگان
چکیده
Example 6.2 For the second example, we consider the stabilized parameters μ = δ = 0.5. Table 2 shows that a first-order convergence is obtained for the control, which is well matched with the theoretical analysis. Figures 4, 5, and 6 show the approximate profiles of the control, the state, and the flux state, respectively, when the lowest order RT element is adopted for the approximation of the flux σ .
منابع مشابه
VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملA Posteriori Error Estimates for Semilinear Boundary Control Problems
In this paper we study the finite element approximation for boundary control problems governed by semilinear elliptic equations. Optimal control problems are very important model in science and engineering numerical simulation. They have various physical backgrounds in many practical applications. Finite element approximation of optimal control problems plays a very important role in the numeri...
متن کاملError Estimates of Mixed Finite Element Approximations for a Class of Fourth Order Elliptic Control Problems
In this paper, we consider the error estimates of the numerical solutions of a class of fourth order linear-quadratic elliptic optimal control problems by using mixed finite element methods. The state and co-state are approximated by the order k Raviart-Thomas mixed finite element spaces and the control variable is approximated by piecewise polynomials of order k (k ≥ 1). L and L-error estimate...
متن کاملMixed Finite Element Methods for Fourth Order Elliptic Optimal Control Problems
In this paper, a priori error estimates are derived for the mixed finite element discretization of optimal control problems governed by fourth order elliptic partial differential equations. The state and co-state are discretized by RaviartThomas mixed finite element spaces and the control variable is approximated by piecewise constant functions. The error estimates derived for the state variabl...
متن کاملA priori error estimates for higher order variational discretization and mixed finite element methods of optimal control problems
* Correspondence: zulianglux@126. com College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan 411105, PR China Full list of author information is available at the end of the article Abstract In this article, we investigate a priori error estimates for the optimal control problems governed by elliptic equations using higher order variational discretization and mixed finite elem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 66 شماره
صفحات -
تاریخ انتشار 2016